8,511 research outputs found

    Nuclear G-Matrix Elements from Nonlocal Potentials

    Get PDF
    We study effects of nonlocality in the nuclear force on the G-matrix elements for finite nuclei. Nuclear G-matrix elements for \O16 are calculated in the harmonic oscillator basis from a nonlocal potential which models quark exchange effects between two nucleons. We employ a simple form of potential that gives the same phase shifts as a realistic local nucleon potential. The G-matrix elements calculated from the nonlocal potential show moderate increase in repulsion from those derived from the local potential.Comment: 11 page, LaTeX, 2 PS figures, uses epsf.st

    Negative Parity Baryons in the QCD Sum Rule

    Get PDF
    Masses and couplings of the negative parity excited baryons are studied in the QCD sum rule. Separation of the negative-parity spectrum is proposed and is applied to the flavor octet and singlet baryons. We find that the quark condensate is responsible for the mass splitting of the ground and the negative-parity excited states. This is expected from the chiral symmetry and supports the idea that the negative-parity baryon forms a parity doublet with the ground state. The meson-baryon coupling constants are also computed for the excited states in the QCD sum rule. It is found that the \pi NN^* coupling vanishes in the chiral limit.Comment: 13pp, LaTeX, 1 EPS figure, uses epsf.sty, Talk given by M.O. at CEBAF/INT workshop "N* physics", Seattle, September (1996), to appear in the proceeding

    Determination of the axial coupling constant gAg_{A} in the linear representations of chiral symmetry

    Full text link
    If a baryon field belongs to a certain linear representation of chiral symmetry of SU(2)SU(2)SU(2) \otimes SU(2), the axial coupling constant gAg_{A} can be determined algebraically from the commutation relations derived from the superconvergence property of pion-nucleon scattering amplitudes. This establishes an algebraic explanation for the values of gAg_{A} of such as the non-relativistic quark model, large-NcN_{c} limit and the mirror assignment for two chiral partner nucleons. For the mirror assignment, the axial charges of the positive and negative parity nucleons have opposite signs. Experiments of eta and pion productions are proposed in which the sign difference of the axial charges can be observed.Comment: 7 pages, proceedings for EMI int. conf. at RCNP, Dec. 200

    Chiral symmetry aspects of positive and negative parity baryons

    Full text link
    Chiral symmetry aspects for baryon properties are studied. After a brief discussion on general framework, we introduce two distinctive chiral group representations for baryons: the naive and mirror assignments. Using linear sigma models, nucleon properties are studied in both representations. Finally, we propose an experiment to distinguish the two assignments in the reactions of pion and eta productions.Comment: PTPTeX 12 pages, Proceedings for the YITP-RCNP workshop Chiral Restoration in Nuclear Medium, Kyoto, October 200

    A Large-scale CO Imaging of the Galactic Center. II. Dynamical Properties of Molecular Clouds

    Get PDF
    The data from the Nobeyama Radio Observatory 45 m telescope Galactic Center CO survey have been analyzed to generate a compilation of molecular clouds with intense CO emission in this region. Clouds are identified in an automated manner throughout the main part of the survey data for all CO emission peaks exceeding 10 K (TRT_R^*). Correlations between the size, velocity dispersion, virial mass, and the CO luminosity, for the molecular clouds in the Galactic center were shown. We diagnosed gravitational stabilities of identified clouds assuming that the disk clouds are nearly at the onset of gravitational instability. Most of the clouds and cloud complexes in the Galactic center are gravitationally stable, while some clouds with intense CO emission are gravitationally unstable.Comment: 4 pages, 4 figures, to appear in the Proceedings of the 32nd COSPAR Scientific Assembl

    Relation between the separable and one-boson-exchange potential for the covariant Bethe-Salpeter equation

    Full text link
    We investigate the relation between the rank I separable potential for the covariant Bethe-Salpeter equation and the one-boson-exchange potential. After several trials of the parameter choices, it turns out that it is not always possible to reproduce the phase-shifts calculated from a single term of the one-boson-exchange potential especially of the σ\sigma-exchange term, separately by the rank I separable potential. Instead, it is shown that the separable potential is useful to parameterize the total nucleon-nucleon interaction.Comment: 10 pages, 8 figures, to appear in J.Phys.

    Interfaces of correlated electron systems: Proposed mechanism for colossal electroresistance

    Full text link
    Mott's metal-insulator transition at an interface due to band bending is studied by the density matrix renormalization group (DMRG). We show that the result can be recovered by a simple modification of the conventional Poisson's equation approach used in semi-conductor heterojunctions. A novel mechanism of colossal electroresistance is proposed, which incorporates the hysteretic behavior of the transition in higher dimensions.Comment: 5 pages, 3 figures, title change

    Quantum description for a chiral condensate disoriented in a certain direction in isospace

    Get PDF
    We derive a quantum state of the disoriented chiral condensate dynamically, considering small quantum fluctuations around a classical chiral condensate disoriented in a certain direction n \vec n in isospace. The obtained nonisosinglet quantum state has the characteristic features; (i) it has the form of the squeezed state, (ii) the state contains not only the component of pion quanta in the direction n \vec n but also the component in the perpendicular direction to n \vec n and (iii) the low momentum pions in the state violate the isospin symmetry. With the quantum state, we calculate the probability of the neutral fraction depending on the time and the pion's momentum, and find that the probability has an unfamiliar form. For the low momentum pions, the parametric resonance mechanism works with the result that the probability of the neutral fraction becomes the well known form approximately and that the charge fluctuation is small.Comment: 19 page
    corecore